

Sub-millennial-scale Holocene climate reconstruction from  $\delta^{18}$ O of insect remains in SW Greenland

Briana Edgerton Dr. Melissa Chipman



#### Article

### Rate of mass loss from the Greenland Ice Sheet will exceed Holocene values this century

https://doi.org/10.1038/s41586-020-2742-6

Received: 30 December 2019 Accepted: 27 July 2020

Published online: 30 September 2020

Jason P. Briner<sup>1⊠</sup>, Joshua K. Cuzzone<sup>2,3</sup>, Jessica A. Badgeley<sup>4</sup>, Nicolás E. Young<sup>5</sup>, Eric J. Steig<sup>4,6</sup>, Mathieu Morlighem<sup>2</sup>, Nicole-Jeanne Schlegel<sup>3</sup>, Gregory J. Hakim<sup>6</sup>, Joerg M. Schaefer<sup>5,7</sup>, Jesse V. Johnson<sup>8</sup>, Alia J. Lesnek<sup>1</sup>, Elizabeth K. Thomas<sup>1</sup>, Estelle Allan<sup>9</sup>, Ole Bennike<sup>10</sup>, Allison A. Cluett<sup>1</sup>, Beata Csatho<sup>1</sup>, Anne de Vernal<sup>9</sup>, Jacob Downs<sup>8</sup>, Eric Larour<sup>3</sup> & Sophie Nowicki<sup>11</sup>



• We need to understand climate variability along ice sheet margins





### Introduction

 Greenland paleoclimate proxies show spatial and temporal heterogeneity in sub-millennial scale Holocene climate

### Summer insolation forces millennial scale summer temperature in Greenland





### Ice sheet thaw also impacted climate along the western margin of Greenland



### Isotope based records from Greenland



### Study site: Arrowhead Lake











Unit 1:

Coarse-grained terrigenous sediments



Unit 2: Decrease in grain size, increase in organic content

Unit 1:

Coarse grained terrigenous sediments



Unit 3:

Increasing grain size, decreasing organics

Unit 2: Decreased in grain size, increase in organic content

Unit 1:

Coarse grained terrigenous sediments



Unit 3:

Increasing grain size, decreasing organics

Unit 2: Decreased in grain size, increase in organic content

Unit 1:

Coarse grained terrigenous sediments



### Age Model





d180 (VSMOW per mill)







d18O (VSMOW per mill)



### $\delta^{18}$ O conversion to lake water





cm





# Modern lake water $\delta^{18}$ O correlates with adjusted $\delta^{18}$ O from top chironomid sample











Records capture sub-millennial scale variability



#### Discussion





Millennial scale climate • partially driven by summer insolation Our record supports N-S • gradient in magnitude change Records capture submillennial scale variability High summer insolation  $\rightarrow$  LIS collapse  $\rightarrow$  Modified ocean circulation  $\rightarrow$  sea-ice variability  $\rightarrow$  Late Holocene = insolation System state change ٠ effect on GRIS today

### Conclusions

- These chitin-based reconstructions are interpreted to reflect past meteoric water
- Regional records show N-S gradient in magnitude of δ<sup>18</sup>O change
- High resolution δ<sup>18</sup>O records show variability in the climate system likely related to sea-ice and ocean circulation